Dislocation nucleation in bcc Ta single crystals studied by nanoindentation
نویسندگان
چکیده
The study of dislocation nucleation in close-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic bcc metals using low index Ta single crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity, which is distinctly different from that of close-packed metals. Most noticeably, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in the context of the characteristic plastic deformation behavior of bcc metals.
منابع مشابه
Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation
In this work, the interaction between dislocation loop (DL) and coherent twin boundary (CTB) in a body-centered cubic (BCC) tantalum (Ta) film during nanoindentation was investigated with molecular dynamics (MD) simulation. The formation and propagation of <111> full DLs in the nanotwinned (nt) Ta film during the indentation was observed, and it was found that CTB can strongly affect the stress...
متن کاملSimulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method
Dislocation nucleation is central to our understanding of the onset of plasticity during nanoindentation. The shear stress in small volumes beneath the nanoindenter can achieve the theoretical limit of a perfect crystal. The ensuing nonlinear elastic instability can trigger homogenous dislocation nucleation inside the crystal. Here we employ the interatomic potential finite element method to si...
متن کاملAn Energy Balance Criterion for Nanoindentation-Induced Single and Multiple Dislocation Events
Small volume deformation can produce two types of plastic instability events. The first involves dislocation nucleation as a dislocation by dislocation event and occurs in nanoparticles or bulk single crystals deformed by atomic force microscopy or small nanoindenter forces. For the second instability event, this involves larger scale nanocontacts into single crystals or their films wherein mul...
متن کاملCrystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation
The mobility of dislocation in body-centered cubic (BCC) metals is controlled by the thermally activated nucleation of kinks along the dislocation core. By employing a recent interatomic potential and the Nudged Elastic Band method, we predict the atomistic saddle-point state of 1=2〈111〉 screw dislocation motion in BCC iron that involves the nucleation of correlated kinkpairs and the resulting ...
متن کاملLuminescence properties of mechanically nanoindented ZnSe
In this study, we used cathodoluminescence (CL) spectroscopy to examine the CL emissions of zinc selenide (ZnSe) single crystals that had been subjected to Berkovich nanoindentation. The CL spectra of the ZnSe exhibited both impurity emission peaks (1.8–2.4 eV band) and near-bandgap emission peaks (2.68 eV). Although CL emissions were generated during four unloading/reloading cycles, the decrea...
متن کامل